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Abstract. We study the response of an ensemble of synchronized phase oscillators to an external harmonic
perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation
signal to the structure of the interaction network underlying the ensemble. The overall response of the
system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural
frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on
the distance to the place where the perturbation is applied. For small distances on a random network,
the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while
its amplitude decreases exponentially with the distance. For larger distances, the response saturates to
an almost constant level. These different regimes can be analytically explained in terms of the length
distribution of the paths that propagate the perturbation signal. We study the extension of these results
to other interaction patterns, and show that essentially the same phenomena are observed in networks of
chaotic oscillators.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.65.+b Self-organized systems

1 Introduction

Synchronization is a paradigmatic mode of emergent col-
lective behaviour in ensembles of interacting dynamical
elements [1,2]. It arises in a broad class of real sys-
tems, comprising from mechanical and physico-chemical
processes [3–5] to biological phenomena [6–8], and is re-
produced by a variety of mathematical models. Roughly
speaking, it consists of some kind of coherent evolution
where the motions of individual elements are correlated
in time. Depending on the nature of the individual dy-
namical laws and on the interactions, different forms of
synchronized states are possible. They range from full syn-
chronization, where all the elements follow the same orbit
in phase space, to weakly correlated forms where the en-
semble splits into almost independent clusters of mutually
synchronized elements, or where coherence manifests itself
in just a few state variables or in time averages of suitably
chosen quantities [2,9]. Full synchronization is typical for
globally coupled ensembles of identical elements, where
any two elements interact with the same strength. When
coupling is strong enough and represents an attractive in-
teraction, the asymptotic state where all elements share
the same orbit is stable [10]. Under certain conditions,
stability of the fully synchronized state can also be in-
sured for more complex interaction patterns, where each
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pair of elements may or may not interact [11]. Weaker
forms of synchronization are characteristic of ensembles
of non-identical dynamical elements.

A simple but quite useful model for an ensemble of
coupled dynamical elements is given by a set of N phase
oscillators, whose individual dynamics in the absence of
coupling is governed by φ̇ = ω. The phase φ(t) ∈ [0, 2π)
rotates with constant frequency ω. This elementary rep-
resentation of periodic motion, originally introduced as
a model for biological oscillations [7], approximates any
cyclic dynamics, even in the presence of weak coupling [9].
As for the interaction pattern, it can be thought of as
a graph, or network, with one oscillator at each node.
The graph is characterized by its adjacency matrix J =
{Jij}. If oscillator i is coupled to oscillator j, i.e. if the
phase φj(t) enters the equation of motion of φi(t), we
have Jij = 1, and Jij = 0 otherwise. The adjacency ma-
trix is not necessarily symmetric and, thus, coupling is not
always bidirectional. In other words, the interaction net-
work is generally a directed graph. The coupled oscillator
ensemble is governed by the equations [12]

φ̇i = ωi + k

N∑

j=1

Jij sin(φj − φi) (1)

for i = 1, . . . , N , where k is the coupling strength. The case
of global coupling, Jij = 1 for all i and j, has been studied
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in the thermodynamical limit by Kuramoto [9], who found
that, as the coupling strength grows, the system undergoes
a transition to a state of frequency synchronization, as first
predicted by Winfree [13]. The transition parameters are
determined by the distribution of natural frequencies ωi.

For identical oscillators, ωi = ω for all i, and for all
k > 0, the long-time asymptotic state of a globally coupled
ensemble is full synchronization. More generally, it is pos-
sible to show that full synchronization is stable when the
interaction network is regular, i.e. when all oscillators are
coupled to exactly the same number z of neighbours [11].
In this situation,

∑
j Jij = z for all i.

A fully synchronized oscillator ensemble can be
thought of as an active medium in a rest-like state. Mi-
croscopically, this stable state is sustained by the highly
coherent collective dynamics of the interacting oscillators.
A key feature characterizing the dynamical properties of
the medium is determined by its response to an exter-
nal perturbation. How is the synchronized state altered as
the perturbation signal propagates through the ensemble?
Which propagation properties does coupling between os-
cillators establish in the medium? The effect of external
forces on ensembles of interacting dynamical systems has
been studied in detail for global coupling, both for periodic
oscillators and chaotic elements [14–17]. Ordered oscilla-
tor arrays have also been considered [18]. The above ques-
tions, however, are especially significant for more complex
interaction patterns –in particular, for random interaction
networks– where the non-trivial geometric structure is ex-
pected to play a relevant role in the propagation process.
Quite surprisingly, the problem seems to have been ad-
dressed for the first time only recently [19,20].

In this paper, we present numerical calculations and
analytical results for the propagation of a perturbation in
an ensemble of identical phase oscillators, governed by the
equations

φ̇i =
N∑

j=1

Jij sin(φj − φi) + aδi1 sin(Ωt− φi). (2)

Without generality loss, the natural frequency of oscilla-
tors and the coupling strength are fixed to ω = 0 and
k = 1, respectively. The external perturbation is repre-
sented by an additional oscillator of constant frequency Ω,
to which a single oscillator in the ensemble –i.e., oscil-
lator 1– is coupled with strength a. To take advantage
of certain analytical results regarding regular graphs, we
take a connection network where each oscillator is cou-
pled to exactly z neighbours. Our main goal is to relate
the response of the ensemble to the metric properties of
the interaction network. In particular, we pay attention to
the dependence on the distance to the node where the per-
turbation is applied, and on the perturbation frequency.

The paper is organized as follows. In the next section,
we present numerical results for random interaction net-
works of phase oscillators. We show that the system re-
sponse is, essentially, a resonance phenomenon, and iden-
tify two regimes in the dependence on the distance. In
Section 3, we reproduce the numerical results through an

analytical approach in the limit of small-amplitude pertur-
bations. We propose an approximation to obtain explicit
expressions which clarify the role of the network structure
in the propagation process. In Section 4, we extend our re-
sults to other geometries, including ordered networks with
uni- and bidirectional interactions and hierarchical struc-
tures. Moreover, we show that the same propagation prop-
erties are observed in networks of chaotic oscillators, which
broadly generalizes our conclusions. Results are summa-
rized and commented in the final section.

2 Numerical results

We have solved equations (2) numerically, for an ensemble
of N = 103 oscillators. We have considered a random reg-
ular network, with z = 2. The network was constructed by
choosing at random the z neighbours of each node. Mul-
tiple directed links between any two nodes were avoided,
and realizations which produced disconnected networks
were discarded. Most of the results presented here corre-
spond to a perturbation of amplitude a = 10−3 and var-
ious frequencies, typically ranging from Ω ∼ 10−2 to 10.
The integration ∆t in our numerical algorithm was chosen
such that Ω−1 � ∆t.

The ensemble was prepared in the state of full syn-
chronization, with φi = φj for all i and j. Before record-
ing the evolution of the phases φi, an interval much longer
than Ω−1 was left to elapse. After this interval, any tran-
sient behaviour due to the combined effect of the dissi-
pative mechanisms inherent to the coupled oscillator dy-
namics and the external perturbation had relaxed and the
system had reached a regime of steady evolution. Numer-
ical results show that, in this regime, each phase φi(t)
oscillates around the average φ̄(t) = N−1

∑
i φi(t), seem-

ingly with harmonic motion of frequency Ω. Our aim was
to quantitatively characterize the departure from full syn-
chronization due to the response to the external pertur-
bation. As a measure of this departure for each individual
oscillator i, we considered the time-averaged mean square
deviation in φ-space, defined as

σφi =
[〈(

φi − φ̄
)2

〉]1/2

, (3)

where 〈·〉 denotes time averages over sufficiently long in-
tervals. The mean square deviation σφi is a direct measure
of the amplitude of the motion of each phase with respect
to the average φ̄. In the fully synchronized state, σφi = 0
for all i.

It turns out that, for a given realization of the interac-
tion network and a fixed value of the frequency Ω, σφi has
a rather well defined dependence on the distance di from
oscillator 1, where the external perturbation is applied, to
oscillator i. The distance di is defined as the number of
links along the shortest directed path starting at oscilla-
tor 1 and ending at i. On the other hand, especially for
large distances di, σφi may strongly depend on the specific
realization of the interaction network. In view of the well
defined dependence of the mean square deviation on the
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Fig. 1. Mean square deviation from full synchronization as a
function of the distance from the oscillator where the external
perturbation is applied, for various values of the frequency Ω.
As a guide to the eye, spline interpolations are shown as curves.

distance, and for clarity in the notation, from now on we
drop the index i which identifies individual oscillators.

Figure 1 shows results for the mean square devia-
tion σφ as a function of the distance d for several frequen-
cies Ω and a fixed interaction network. In this realization
of the network, the maximal distance between oscillator 1
and any other oscillator is dmax = 15. For each value of d,
the individual values of σφ have been averaged over all the
oscillators at that distance from oscillator 1. It is apparent
that the mean square deviation exhibits two well differen-
tiated regimes as a function of the distance. For small d,
σφ decreases exponentially, at a rate that sensibly depends
on the frequency Ω. In this regime, the perturbation is in-
creasingly damped as it propagated through the system.
At large distances, on the other hand, σφ is practically in-
dependent of d. It is this large-distance value of σφ which,
typically, shows considerable variations between different
realizations of the interaction network. The transition be-
tween the two regimes is mediated by a zone where σφ at-
tains a minimum, which is sharper for smaller frequencies.
Thus, the mean square deviation varies non-monotonically
with the distance.

The dependence of σφ on the frequency Ω for fixed
distance reveals that the response of the oscillator ensem-
ble to the external perturbation is, essentially, a resonance
phenomenon. In Figure 2 we plot σφ as a function of Ω for
three values of d. For small and large distances, the mean
square deviation from full synchronization displays a sym-
metric peak around the natural frequency of the individ-
ual oscillators (ω = 0). This shows that the response of
the ensemble is maximal when the external perturbation
varies with the same frequency of the elementary compo-
nents of the system. For intermediate distances, however,
an anomaly appears. While for large frequencies the re-
sponse decreases as expected, the resonance peak is re-
placed by a local minimum at Ω = ω. The response is
now maximal at two symmetric values around the natural
frequency of the oscillators. This anomaly is directly re-
lated to the fact that the minimum in σφ for intermediate
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Fig. 2. Mean square deviation from full synchronization as
a function of the frequency of the external perturbation, at
various distances from the node at which the perturbation is
applied. Curves, added for clarity, are spline interpolations.
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Fig. 3. The same as in Figure 2, in log-log scale. Data for
d = 0 and d = 3 are also shown. Dotted lines have slope −1.

distances (Fig. 1) is sharp for small Ω and becomes much
less distinct as the frequency of the external perturbation
increases. This effect, combined with the overall decrease
of σφ as Ω grows, implies a non-monotonic dependence Ω
at such distances, which results into the appearance of the
double peak.

The double-logarithmic plot of Figure 3 reveals the
large-Ω behaviour of the mean square deviation from full
synchronization. Beyond the resonance zone, σφ decreases
with the frequency asΩ−1 for all distances. Note, however,
that the value of σφ in the large-Ω regime is the same for
all d > 0, while for d = 0 –i.e., at oscillator 1, where
the external perturbation is applied– σφ is three orders of
magnitude larger.

The fact that the mean square deviation σφ shows a
well defined dependence on the distance does not neces-
sarily imply that the individual motions of oscillators with
the same value of d are related in any specific way. As a
matter of fact, being a time average, σφ bears no informa-
tion about possible correlations between the instantaneous
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Fig. 4. Snapshot of individual phases on the plane
(cos φ, sin φ). Labels indicate the distance to the oscillator
where the external perturbation is applied. The insert shows
a close-up of oscillators with d > 3, revealing the fine cluster
structure for larger distances.

state of different oscillators. To detect such correlations
we have inspected successive snapshots of the set of indi-
vidual phases plotted on the unit circle, i.e. on the plane
(cosφ, sinφ). Figure 4 shows one of these snapshots for
the same system of Figures 1 to 3. It turns out that, ac-
tually, there is a strong correlation between the positions
of oscillators with the same value of d. According to their
distance, they form clusters of gradually decreasing devi-
ations and growing dispersion. Clusters with d < 4 are
so compact that they cannot be resolved into single ele-
ments in the scale of the main plot of Figure 4. For larger
distances, clusters are relatively more disperse, as shown
in the insert. Clustering in the distribution of phases re-
veals that, for a given value of d, oscillations around the
average phase φ̄ occur coherently. In the next section we
show analytically that, in fact, these oscillations are very
approximately in-phase.

Finally, we have studied the dependence of the re-
sponse of the system on the perturbation amplitude a.
Over a wide range, the mean square deviation of individ-
ual oscillators results to be proportional to the amplitude,
σφ ∝ a. As an illustration, Figure 5 shows the ratio σφ/a
as a function of the distance for a perturbation frequency
Ω = 0.1. Curves collapse for all a � 2. Only for a > 2 do
we find significant departures from the small-amplitude
regime. For a = 3 the response of the whole system is
relatively increased, especially, for intermediate and large
distances. Finally, for a = 10 we have an overall saturation
of the response, and the ratio σφ/a decreases.

In the next section, we show that most of the numer-
ical results presented here can be analytically explained
by means of a small-amplitude approximation of equa-
tion (2). Our analytical approach reveals the role of the
interaction structure in the response of the system to the
external perturbation.
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Fig. 5. Normalized mean square deviation, σφ/a, for various
values of the perturbation amplitude a, as a function of the
distance to the oscillator where the external perturbation is
applied. The perturbation frequency is Ω = 0.1.

3 Analytical results

3.1 Small-amplitude limit

The numerical results presented in Figure 5 suggest that
the limit of small external perturbation (a � 1) bears
significant information on a wide range of values for the
amplitude a. It is therefore worthwhile to study this limit
analytically, representing the instantaneous state of the
oscillator ensemble as a perturbation of order a to full
synchronization. Introducing, as in the previous section,
the average phase φ̄(t) = N−1

∑
i φi(t), we write the phase

of oscillator i as a perturbation of order a to φ̄,

φi(t) = φ̄(t) + aψi(t), (4)

with
∑

i ψi = 0. In turn, the average φ̄ is expected to vary
around a constant phase φ0, with fluctuations of ampli-
tude proportional to a:

φ̄(t) = φ0 + aΦ(t). (5)

Without generality loss, we take φ0 = 0.
Replacing equations (4) and (5) in (2), and expanding

to the first order in the perturbation amplitude a, we get

Φ̇ =
1
N

∑

ij

Jij(ψj − ψi) +
1
N

exp(iΩt) (6)

for the average phase deviation, and

ψ̇i = −Φ̇+
∑

j

Jij(ψj − ψi) + δi1 exp(iΩt) (7)

for the individual deviations. For simplicity in the mathe-
matical treatment, we have replaced sin(Ωt) by exp(iΩt).
Focusing on the case where each oscillator is coupled to
exactly z neighbours, the above equations can be simpli-
fied taking into account that

∑
j Jij(ψj − ψi) = −zψi +∑

j Jijψj and
∑

ij Jij(ψj − ψi) =
∑

ij Jijψj .
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Fig. 6. Amplitude moduli from the numerical solution of equa-
tion (8), for the same system as in Figure 1. Dotted lines are
spline approximations for

√
2σφ/a, for the values of the mean

square deviation σφ presented in Figure 1. Full straight lines
show the analytical prediction for the slope at small distances,
equation (16).

Note that the time derivative of the average phase de-
viation Φ enters the equation of motion for the individual
deviations ψi, equation (7), as a kind of external force
acting homogeneously over the whole ensemble. Accord-
ing to equation (6), this effective force is of order N−1. As
we show later, it dominates the response of oscillators at
large distances, where the effect of the perturbation signal
propagated through the network is lower.

Equation (7) admits solutions of the form ψi(t) =
Ai exp(iΩt), corresponding to steady harmonic motion at
the frequency of the external perturbation. These steady
solutions are expected to represent the motion once tran-
sients have elapsed. The complex amplitudes Ai satisfy a
set of linear equations, which can be cast in matrix form as

LA = b, (8)

with A = (A1, A2, . . . , AN ). The elements of the matrix L
and of the vector b are, respectively,

Lij = (z + iΩ)δij − Jij +
1
N

∑

k

Jkj (9)

and
bi = δi1 − 1

N
. (10)

For a given interaction network, the amplitudes A = L−1b
can be found, for instance, numerically. Note that the
amplitude modulus |Ai| is a direct measure of the mean
square deviation σφi , introduced in Section 2 to quanti-
tatively characterize the departure from full synchroniza-
tion in the numerical realization of our system. In fact,
for harmonic motion, σφi = a|Ai|/

√
2. The phase ϕi of

the complex amplitude Ai = |Ai| exp(iϕi) measures the
phase shift of the oscillations of ψi(t) with respect to the
external perturbation.

Figure 6 shows the amplitude moduli |Ai| obtained
from the numerical solution of equation (8), for a ensem-
ble of N = 103 oscillators with the same interaction net-
work as in the results presented in Section 2. The values
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Fig. 7. Phase shift as a function of distance, from the nu-
merical solution of equation (8) and for the same system as in
Figure 1. Straight lines show the analytical prediction for the
slope at small distances, equation (16).

of |Ai| are averaged over all the oscillators at a given dis-
tance d from oscillator 1, and the subindex i is accordingly
dropped. Results are presented for several values of the fre-
quency Ω. Dotted lines are spline approximations of the
numerical data for σφ already presented in Figure 1, mul-
tiplied by a factor

√
2/a. The agreement with the solution

of equation (8) is excellent.
The phase shifts ϕi corresponding to the same solu-

tions of equation (8) are shown in Figure 7, as a function
of the distance and for several values of the frequency Ω.
Data for Ω = 1 are also shown. As it may be expected,
phase shifts are always negative, indicating a delay in the
response of the system to the external perturbation. Co-
inciding with the regime where the amplitude moduli |Ai|
decrease exponentially, we find a zone where phase shifts
vary linearly with distance. Namely, the phase shift be-
tween oscillators whose distances to oscillator 1 differ by
one is a constant∆ϕ. This unitary phase shift, which gives
the slope of ϕ as a function of the distance, depends on the
frequency Ω. In this zone, individual phases vary with dis-
tance as ψi ∝ exp[i(di∆ϕ + Ωt)]. Thus, the perturbation
propagates through the system at constant speed |Ω/∆ϕ|.
For larger distances, this linear regime breaks down, and
the variation of ϕ with d tends to be much less pro-
nounced. In the transition between both regimes, however,
the phase shift varies rather abruptly for small frequen-
cies, while it develops a minimum for larger Ω.

The results presented in Figures 6 and 7 where ob-
tained from the numerical solution of the small-amplitude
limit equation (8). A more explicit solution can be ob-
tained from a suitable approximation of equation (8), tak-
ing into account specific mathematical properties of the
matrix L, as we show in the following section.

3.2 Approximate solution

According to equation (9), the matrix L can be written as

L = (z + iΩ)I − J̃ , (11)
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where I is the N × N identity matrix, and the elements
of J̃ are

J̃ij = Jij − 1
N
ξj , (12)

with ξj =
∑

k Jkj . Our approximation to the solution of
equation (8) is based on the following remarks.

(i) Due to the fact that
∑

j Jij = z for all i, the eigen-
values of the adjacency matrix J are all less than or equal
to z in modulus [11]. Moreover, the eigenvalues of J̃ are
the same as those of J . In fact, if v = (v1, v2, . . . , vN )
is an eigenvector of J , then ṽ = (ṽ1, ṽ2, . . . , ṽN ), with
ṽi = vi − N−1

∑
k vk, is an eigenvector of J̃ with the

same eigenvalue. This implies that, for Ω 	= 0, the inverse
of the matrix L can be expanded as

L−1 =
[I − (z + iΩ)−1J̃ ]−1

(z + iΩ)
=

∞∑

m=0

J̃m

(z + iΩ)m+1
, (13)

because all the eigenvalues of the matrix (z+ iΩ)−1J̃ are
less than unity in modulus.

(ii) While
∑

j Jij = z for all i,
∑

k Jkj = ξj varies
with j. Note that ξj is the number of links starting
at j, and thus gives the number of oscillators which are
coupled to oscillator j. For any realization of the inter-
action network, however, the average value of ξj over
the whole ensemble is always the same, N−1

∑
j ξj =

N−1
∑

jk Jkj = z. This suggests that, as an approximation
to equation (12) avoiding the explicit calculation of ξj , we
can take J̃ij = Jij − z/N . More generally, it is possible to
show that this same approximation yields, for the powers
of J̃ ,

J̃
(m)
ij = J

(m)
ij − zm

N
, (14)

where J
(m)
ij and J̃

(m)
ij are elements of the matrices J m

and J̃ m, respectively.
Combining equations (13) and (14), the approximate

form of matrix L−1 can be applied to the vector b in
the right-hand side of equation (8) to give the following
approximation for the amplitudes:

Ai =
∞∑

m=0

1
(z + iΩ)m+1

[
J

(m)
i1 − zm

N

]

=
∞∑

m=0

J
(m)
i1

(z + iΩ)m+1
+

i
NΩ

. (15)

In this approximation, the effect of the average deviation
from full synchronization –which, as we discussed in Sec-
tion 3.1, can be interpreted as an external effective force
acting over all the oscillators with the same intensity– is
represented by the terms of order N−1.

It is interesting that the approximation (15) involves
explicitly the matrix elements of the powers of J . The ma-
trices J m (m = 1, 2, . . . ) bear information about the met-
ric structure of the interaction network. Specifically, the
element J (m)

ij equals the total number of directed paths of
length m starting at node j and ending at node i [21]. In

other words, J (m)
ij gives the number of different ways of

reaching node i from node j in exactly m steps along di-
rected links. Equation (15) shows that the response of any
individual oscillator to the external perturbation, mea-
sured by the amplitude Ai, is directly related to the num-
ber of paths though which the perturbation signal can
flow from oscillator 1. Note that J (m)

i1 = 0 for m < di and
J

(m)
i1 = 1 for m = di. For oscillator i, therefore, the first

contribution to the sum in the second line of equation (15)
comes from the term with m = di. For m > di, J

(m)
i1 is

different from zero if at less one path of length m starts
at oscillator 1 and ends at i.

For nodes at small distances from oscillator 1, there
is typically only one path of length di from 1 to i. In
fact, the probability of having more than one path of
short length between any two oscillators is, at most, of
order z/N (which we assume to be a small parameter,
as in our numerical analysis). As a result, for most os-
cillators at a small distance from oscillator 1, we have
J

(di)
i1 = 1. Moreover, the total number of nodes with small
di, n(di) ∼ zdi , is also small as compared with the system
size N . This implies that the possibility that an oscilla-
tor at a small distance di is also connected by a path
of length slightly larger than di can be neglected. Conse-
quently, for oscillators at small distances from the node
at which the perturbation is applied, the sum in the sec-
ond line of equation (15) is dominated by the term with
m = di. This dominance is enhanced for large |z + iΩ|,
because successive terms in the sum are weighted by in-
creasing inverse powers of that number. If the system is
large enough we can drop the last term in the second line
of equation (15), and write Ai ≈ (z + iΩ)−di−1, i.e.

Ai ≈
(
z2 +Ω2

)− di+1
2 exp

[
−i(di + 1) tan−1 Ω

z

]
. (16)

Within this approximation, the small-distance exponen-
tial dependence of the amplitude modulus, |Ai| ≈ (z2 +
Ω2)−

di+1
2 is apparent. Straight lines in Figure 6 show the

excellent agreement between the predicted slope of |Ai|
and our numerical results. Equation (16) also explains
the linear dependence of the phase shift ϕi with the
distance. Specifically, it predicts a unitary phase shift
∆ϕ = − tan−1(Ω/z). Straight lines in Figure 7 stand for
this prediction.

Two effects contribute to break down the small-dist-
ance approximation (16). First, as discussed above, we
expect that this approximation does not hold beyond dis-
tances where zdi ∼ N , i.e. di ∼ logN/ log z. At larger
distances, in fact, it is not true that only one path con-
tributes to the propagation of the perturbation signal from
the node at which it is applied. The second effect has to
do with the relative magnitude of the first non-zero term
in the sum of the last line of equation (15) and the term
of order N−1. For sufficiently large distances, the latter
cannot be neglected with respect to the former. If Ω � z,
the two terms become comparable for zdi+1 ∼ NΩ, while
if z � Ω they are similar for Ωdi ∼ N . It turns out that,
in both limits, this second effect acts at distances smaller
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than the first one. This does not imply, however, that the
first effect plays no role in determining the response of the
system at large distances.

It can be shown that, for oscillators at large distances
from oscillator 1, the matrix element in the sum of equa-
tion (15) can be accurately approximated as J (m)

i1 = J0z
m

for all m ≥ di, while J (m)
i1 = 0 for m < di. In fact, we can

argue that the number of paths of length m ending at a
given oscillator i scales as zm for large m, by noticing that
this number is z times the number of paths of length m−1
ending at the oscillators to which i is coupled. The precise
value of the prefactor J0 depends on N and on the specific
realization of the network, but is independent of the dis-
tance di. For the network corresponding to the numerical
results presented above, for instance, J0 ≈ 9.91 × 10−4.

Replacing the Ansatz for J (m)
i1 in equation (15) and

performing the summation, we get

Ai ≈ i
Ω

[
−J0

(
1 +

Ω2

z2

)−di
2

× exp
(
−idi tan−1 Ω

z

)
+

1
N

]
. (17)

This large-distance approximation for the complex ampli-
tude Ai is more clearly analyzed for limit values of the
frequency Ω. For small Ω, specifically for diΩ/z � 1, the
amplitude modulus is

|Ai| ≈ 1
Ω

√
d2

iΩ
2

z2
J2

0 +
(

1
N

− J0

)2

. (18)

As found in our numerical results, Figures 1 and 6, the
response grows with di for large distances. Combined with
the decrease observed for small distances, this explains the
existence of an intermediate minimum in both |Ai| and σφ.
The amplitude phase

ϕi = − tan−1 z

diΩ

(
1

J0N
− 1

)
(19)

exhibits a more complicated functional dependence with
the distance. In the opposite limit of large frequencies,
the large-distance approximation (17) is dominated by the
last term, Ai ≈ i/NΩ. We recall that this term stands for
the contribution of the average deviation from full syn-
chronization to the individual motion of oscillators. The
amplitude modulus becomes independent of the distance,
as found in the results of Figure 6. Its phase is always
π/2 –or, more generally, π/2 + 2kπ, with k an integer.
In the results for large Ω shown in Figure 7, we have
ϕ ≈ π/2 − 2π ≈ −4.71.

Coming back to the full form of our approximation for
the amplitude, equation (15), let us finally point out that,
for sufficiently large frequency Ω and irrespectively of the
distance di, the dominant terms are of order Ω−1. To this
order, the sum contributes its first term, m = 0. Since
J 0 = I, for Ω → ∞ we get

Ai ≈ i
Ω

(
−δi1 +

1
N

)
. (20)

This result explains the decay as Ω−1 in the tails of the
resonance peaks, displayed in Figure 3. It also shows that
the large-frequency response of oscillator 1 is N times
larger than that of any other oscillator, as illustrated in
the same figure. Moreover, we find that the phase shift of
oscillator 1 is ϕ1 = −π/2 while any other oscillator is de-
phased by π/2 with respect to the external perturbation.

4 Extensions

4.1 Other regular network structures

It is important to remark that the analytical approach pre-
sented in Section 3, so far applied to random networks, is
valid for a large class of interaction patterns. In fact, the
only condition imposed on the adjacency matrix J to ob-
tain the results of Section 3.1 is that

∑
j Jij = z for all

i, while the approximation of Section 3.2 requires that∑
i Jij ≈ z for all j. These conditions imply, respectively,

that each oscillator is coupled to exactly z neighbours and
that, in turn, the number of oscillators coupled to each
oscillator is also approximately constant. Under such con-
ditions, our approach can be used to evaluate the response
of an ensemble with any interaction pattern. In this sec-
tion, we illustrate this fact with a few cases that admit to
be worked out explicitly.

Consider first a linear array of N oscillators with pe-
riodic boundary conditions, where each oscillator is cou-
pled to its nearest neighbour to the left (z = 1). We as-
sume that oscillators are numbered from left to right in
the natural order. For this directed ring, we have Jij = 1 if
i = (j + 1) mod N , and Jij = 0 otherwise. Consequently,∑

k Jkj = 1 for all j, and the approximation of Section 3.2
is exact. The relevant elements of Jm are J

(m)
i1 = 1 if

m = di + kN (k = 0, 1, 2, . . . ), and J (m)
i1 = 0 otherwise. In

fact, the only paths that join oscillator 1 with oscillator i,
at distance di = i−1, are those of length di plus an integer
number k of turns around the ring. The calculation of the
amplitudes yields

Ai =
(1 + iΩ)−di−1

1 − (1 + iΩ)−N
+

i
NΩ

. (21)

For Ω � 1, but with NΩ � 1, the amplitude at essen-
tially all distances (di � N) is dominated by the first term
of equation (21). In this regime, |Ai| decreases exponen-
tially with di and the phase shift ϕi varies linearly, with
∆ϕ = − tan−1Ω. In the opposite limit of large frequen-
cies, Ω � 1, the amplitude decays as Ω−1. For oscillator 1
(d1 = 0), we have A1 ≈ −i/Ω, while for any other oscilla-
tor (di > 0), Ai ≈ i/NΩ. We stress the qualitative similar-
ity between these results and those obtained for random
networks.

Note that in the limit N → ∞, the perturbation can-
not attain the oscillators to the left of oscillator 1, an there
is only one path (of length m = di) for the signal to reach
the oscillators to its right. In this limit, Ai = (1+iΩ)−di−1

at all distances, and the regime of exponential decay and
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linear phase shift extends over the whole system to the
right of the node where the perturbation is applied.

Consider now a linear array –which, for simplicity, we
treat in the limit N → ∞– where each oscillator is coupled
to its two first neighbours (z = 2). Again, the approxima-
tion of Section 3.2 is exact. With this bidirectional cou-
pling, there are infinitely many directed paths joining any
two nodes in the network. A path of length m between
oscillator 1 and oscillator i consists of m+ steps to the
right and m− steps to the left, with m+ + m− = m and
|m+ −m−| = di. The number of such paths is

J
(m)
i1 =

(
m
m+

)
=

(
m

m+di

2

)
(22)

if m and di (m ≥ di) are both even or odd, and 0 oth-
erwise. To perform the summation in equation (15), it is
convenient to write m = di +2q and sum over q = 0, 1, . . .
This yields

Ai =
∞∑

q=0

(
di + 2q
q

)

(2 + iΩ)di+2q+1

=
2F1

[
di+1

2 , di

2 + 1; di + 1; 4
(2+iΩ)2

]

(2 + iΩ)di+1
, (23)

where 2F1(a, b; c; z) is the hypergeometric function [24].
This exact result can be approximately analyzed for lim-
iting values of Ω. For Ω � 1, the amplitude modulus
decreases exponentially with the distance, as |Ai| ∝ (1 +√

2Ω)−di/2, while the phase shift varies linearly with di,
with slope ∆ϕ = − tan−1(1 +

√
2/Ω)−1. Note that the

exponential decrease of |Ai| is much slower than in the
case of random networks with the same z. For random
networks, in fact, we have found that –in the limit of
small frequency and in the regime of exponential decay–
|Ai| ∼ z−di−1. Here, on the other hand, the decay of |Ai|
becomes increasingly slower as Ω → 0. This important
difference is a consequence of the fact that, in a random
network and at small distances, essentially only one path
contributes to the propagation of the perturbation signal
towards each oscillator. For the bidirectional linear array,
in contrast, the total number of paths

∑
m J

(m)
i1 grows

exponentially with di. This growth compensates partially
the exponentially decreasing contributions from successive
path lengths [cf. Eq. (15)].

In the limit of large frequency, on the other hand, we
find Ai ≈ (2 + iΩ)−di−1, i.e. |Ai| ∼ Ω−di−1. It is essential
to this result, however, that –assuming an infinitely large
system– we have neglected the term of order N−1 in equa-
tion (15). For any finite size, if N is fixed, the limit of large
frequencies is dominated by this term, and |Ai| ∼ Ω−1.

Let us finally consider a interaction network with a hi-
erarchical structure, in the form of a directed tree where
nodes are distributed into successive layers. An oscilla-
tor at a given layer is coupled to only one oscillator in the
layer immediately above, so that z = 1, and the uppermost
layer consists of a single oscillator, where the external per-
turbation is applied. Thus, the perturbation propagates

downwards through the hierarchy. If layers are labeled in
the natural order starting by l = 0 at the uppermost layer,
the distance di of any oscillator to the node where the per-
turbation is applied coincides with the label of its layer.
Namely, oscillators at level l = 1 have di = 1, at level
l = 2 they have di = 2, and so on. There is only one
path, of length di, through which the perturbation can
reach oscillator i. Therefore, only one term contributes to
the sum in equation (15). Now, it is important to note
that the approximation (ii) introduced in Section 3.2 is
no longer suitable. While each oscillator is coupled to only
one neighbour, the number of oscillators coupled to oscil-
lator j,

∑
k Jkj , is typically larger than one. In a regular

hierarchical structure, in fact, we fix
∑

k Jkj = z′ > 1
for all j. In this situation, equation (15) changes in such a
way that the last term becomes multiplied by a factor z′/z.
The amplitude is

Ai = (1 + iΩ)−di−1 +
z′

z

i
NΩ

. (24)

Not unexpectedly, this result is similar to that for a uni-
directional linear array, equation (21). In the first term,
which stands for the exponential-decay regime, the main
difference corresponds to a factor which, in the case of
the array, takes into account that the perturbation signal
reaches an oscillator at each turn around the array. In the
second term, the two results differ precisely in the fac-
tor z′/z. This effect enhances the response of oscillators
with di > 0 at large frequencies, where |Ai| ≈ z′/zNΩ.

4.2 Non-regular random networks

So far, our numerical and theoretical analyses have dealt
with regular networks, where all oscillators are coupled to
exactly the same number z of neighbours. While the an-
alytical approach cannot be extended to the case of more
general structures, it is worthwhile to show that our results
hold –at least, qualitatively– for non-regular random net-
works. For sufficiently large networks, with a well defined
average number of neighbours per site, it is in fact ex-
pected that statistical quantities such as the mean square
deviation σφi are essentially not sensible to the regularity
of the interaction pattern.

We consider non-regular random networks of
two types. In the first type (random I) the number
of neighbours zi of each site i is chosen to be 1, 2
or 3 with equal probability 1/3. The average number
of neighbours is thus z̄ = 2, which makes it possible
to compare with our results for regular networks with
z = 2. Once zi has been defined, the neighbours of
site i are chosen at random from the whole system,
avoiding self-connections and multiple connections. In
the second type of non-regular random networks (ran-
dom II), the number of neighbours of each site is drawn
from the discrete probability distribution p(z) = 2−z

(z = 1, 2, . . . ), which also insures z̄ = 2 but with a much
wider dispersion. Our numerical calculations were run
for a system of N = 103 oscillators, with a perturbation
amplitude a = 10−3.
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Fig. 8. Mean square deviation from full synchronization in
non-regular random oscillator networks of the two types de-
scribed in the text (random I and II), for various values of the
perturbation frequency Ω. Symbols are as in Figure 1.

Figure 8 shows results for the mean square devia-
tion from full synchronization σφ, with the two types of
non-regular random networks. For the sake of compari-
son with the case of regular networks, the perturbation
frequencies Ω are the same as in Figure 1. Moreover, spe-
cific realizations of the networks with the same maximal
distance to the perturbed oscillator, dmax = 15, were se-
lected. The vertical axes cover also the same range. We
verify at once that the main features in the dependence of
the mean square deviation on the distance found for reg-
ular interaction patterns are also present in non-regular
networks. As it may have been expected, quantitative dif-
ferences are more important for small frequencies, i.e. near
the resonance. There, the oscillator network is more sen-
sible to the perturbation and, arguably, its detailed struc-
ture plays a more noticeable role in determining its re-
sponse. For larger frequencies, the values of σφ become
increasingly indistinguishable from those obtained for reg-
ular networks.

4.3 Chaotic oscillators

An important question regarding the generality of the re-
sults presented so far is whether they apply to ensembles
of coupled elements whose individual dynamics are not
simple phase oscillations. While we may argue that any

cyclic behaviour, even in the presence of external forces,
can be approximately described by a periodic phase os-
cillator [9], the question remains open for chaotic coupled
dynamical systems. To address this problem we have con-
sidered an ensemble of Rössler oscillators, described by
the equations

ẋi = −yi − zi + k
∑

j Jij(xj − xi) + aδi1 sinΩt

ẏi = xi + 0.2yi + k
∑

j Jij(yj − yi)

żi = 0.2 + zi(xi − c) + k
∑

j Jij(zj − zi).

(25)

The parameter c controls the nature of the oscillations;
for c = 4.46 they are chaotic [22]. As in Sections 2 and 3,
we choose the adjacency matrix such that

∑
j Jij = z

for all i. Each Rössler oscillator is thus coupled to exactly
z neighbours. Chaotic systems can be fully synchronized if
the coupling intensity k is larger than a certain threshold
value, related to the Lyapunov exponent of the individual
dynamics [2,11]. For the above value of c, a coupling in-
tensity k = 0.2 insures that full synchronization is stable.
In our ensemble of Rössler oscillators, the external pertur-
bation acts on just one of the coordinates of oscillator 1,
namely, on x1(t).

The numerical results presented below have been ob-
tained for an ensemble of N = 103 Rössler oscillators,
with z = 2 and the parameters quoted in the preceding
paragraph. For the sake of comparison, the interaction
network is the same as in our study of phase oscillators
(Sects. 2 and 3). The amplitude of the external pertur-
bation is a = 10−3. As a characterization of the response
of the system, we have used a natural extension of the
mean square deviation from full synchronization defined
in equation (3) for phase oscillators, given by

σri =
(〈|ri − r̄|2〉)1/2

, (26)

with ri = (xi, yi, zi) and r̄ = N−1
∑

i ri. Time averages,
indicated as 〈·〉, are performed over sufficiently long in-
tervals, after transients have been left to elapse. Figure 9
shows numerical results for the mean square deviation as a
function of the distance, and for various perturbation fre-
quencies. Individual values of σri for Rössler oscillators at
a given distance from oscillator 1 have been averaged, and
the index i has been dropped accordingly. We see that the
overall behaviour of σr as a function of d is similar to that
found for ensembles of phase oscillators (cf. Fig. 1), with
rapid decrease for small distances and smooth growth for
large distances. In all cases, the two regimes are separated
by a well defined minimum. The exponential character of
the decrease for small d and the saturation of σr for large d
are, however, much less clear than for phase oscillators.

The results of Figure 9 clearly show that the mean
square deviation varies non-monotonically with the per-
turbation frequency. The dependence of σr with Ω is
expected to reveal the resonance nature of the system
response. The natural frequency ω of individual Rössler
oscillators can be defined, in the chaotic regime, in terms
of the average period T of the chaotic oscillations. Each
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Fig. 9. Mean square deviation from full synchronization as a
function of the distance for an ensemble of Rössler oscillators,
for various values of the frequency Ω. Spline interpolations are
shown as curves.
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Fig. 10. Mean square deviation from full synchronization as a
function of perturbation frequency for an ensemble of Rössler
oscillators, at various distances from the node where the per-
turbation is applied. Spline interpolations are shown as curves.

period is determined, for instance, as the time needed
for an oscillator to cross the plane y = 0 in the sub-
space x < 0. These times are then averaged over a large
number of oscillations, and the frequency is calculated as
ω = 2π/T . For c = 4.46, we find ω ≈ 1.08.

In Figure 10 we present numerical results for the mean
square deviation from full synchronization as a function
of Ω, for several distances. For d = 0, we find the expected
resonance maximum atΩ ≈ ω. Interestingly enough, there
is an additional local maximum at Ω ≈ 2ω, correspond-
ing to a harmonic resonance induced by non-linear effects.
The presence of this extra peak is consistent with the fact
that higher-harmonic components are very relevant contri-
butions to the chaotic motion of individual Rössler oscil-
lators [23]. For larger distances, the resonance maximum
is replaced by a double peak, as we have found for phase
oscillators (Fig. 2), with a relative minimum at Ω ≈ ω
and two lateral maxima. At the site of the harmonic res-
onance we find the same structure. In contrast with the

case of phase oscillators, however, the double peak persists
at large distances, with better defined maxima as d grows.

We have also verified that, as for phase oscillators, the
individual motions of Rössler oscillators at the same dis-
tance from oscillator 1 are in-phase. These coherent dy-
namics give rise to a clustered distribution in r-space, and
a snapshot of the ensemble in that space produces a pic-
ture qualitatively very similar to Figure 4.

5 Discussion and conclusion

In this paper, we have studied the response of an ensem-
ble of fully synchronized oscillators to an external pertur-
bation. The perturbation is represented as an additional
oscillator, evolving autonomously with a fixed frequency.
One of the oscillators of the ensemble is coupled to this
additional element. The perturbation propagates through
the system due to the coupling between oscillators. In
the absence of the external action, this interaction sus-
tains the state of full synchronization. The system can
thus be thought of as an active extended medium with
a highly coherent rest state –full synchronization– whose
response to the external perturbation is driven by the col-
lective dynamics of the interacting oscillators. Such re-
sponse, in fact, provides a characterization of the collec-
tive dynamics.

Our study was mainly focused on ensembles of identi-
cal phase oscillators. In its usual formulation, Kuramoto’s
model considers global coupling, where interactions are
identical for all oscillator pairs. In this situation, all oscil-
lators are mutually equivalent, and the response to the ex-
ternal perturbation –other than on the oscillator where the
perturbation is applied– is homogeneous over the whole
system. Therefore, we have considered more complex in-
teraction patterns, introducing interaction networks which
allow for a non-trivial distribution of distances between
oscillators. Interactions were not necessarily bidirectional,
so that coupling was not always symmetric. To take ad-
vantage of certain analytical results on the stability of
full synchronization [11], we have considered regular net-
works, were all oscillators are coupled to the same number
of neighbours. Numerical results obtained show, however,
that this choice does not represent a strong restriction on
the interaction network. The number of neighbours of each
oscillator and the frequency of the external perturbation
are the main parameters that control the response of the
system.

For moderate values of its amplitude, the external
perturbation induces oscillations around the state of full
synchronization. Our main conclusion, first found by nu-
merical means, is that the response of each individual os-
cillator exhibits a clear dependence on the distance from
the node where the perturbation is applied. For random
interaction networks, this dependence shows two well de-
fined regimes. At small distances, the amplitude of the in-
dividual oscillations decreases exponentially with the dis-
tance. Meanwhile, the phase shift of these oscillations with
respect to the external perturbation, which measures the
delay of the individual response, varies linearly with the
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distance. In this regime, thus, the perturbation propagates
through the system at constant velocity, and is progres-
sively damped at a rate proportional to its own amplitude.
In other words, the system behaves as a linear dissipa-
tive medium. For large distances, on the other hand, the
individual response saturates and the dependence of the
amplitude and the phase shift with the distance becomes
much smoother. The relative extension of the two regimes,
as well as the rates of attenuation and dephasing of the
perturbation signal in the linear regime, depend on the
frequency of the external perturbation and on the num-
ber of neighbours of each node.

The fact that the phase shift of individual oscillations
with respect to the external perturbation is defined by the
distance to the node where the perturbation is applied,
implies that all the oscillators at a given distance respond
to the perturbation coherently. Since the amplitudes of
their oscillations are also similar, the “spatial” distribu-
tion of the ensemble –i.e. the distribution in the relevant
one-particle state space– becomes clustered. Especially in
the small-distance regime, where the individual response
strongly depends on the distance, all the oscillators at a
given distance form a compact cluster with coherent oscil-
latory motion. Thus, the external perturbation induces a
“spatial” organization associated with the internal struc-
ture of the interaction network.

The overall response of the system to the external per-
turbation is maximal when the perturbation frequency is
equal to the natural frequency of the oscillators. This not
unexpected resonance phenomenon is revealed by the pres-
ence of a peak in the amplitude of individual oscillations
as a function of the perturbation frequency. Far from the
peak, the amplitude decreases as the inverse of this fre-
quency. For oscillators at intermediate distances, however,
an anomaly in the response appears. The resonance peak
is replaced by a double peak, with a minimum at the res-
onance frequency and two lateral maxima. As we discuss
below, this effect can be interpreted as an interference
phenomenon.

Our numerical results are well reproduced by an ana-
lytical approach based on a linear approximation for small
perturbation amplitudes. This approach is able to dis-
cern between the roles of different contributions to the
response of the system. Two complementary aspects are
worth mentioning. First, we have found that the existence
of two regimes in the distance dependence is directly asso-
ciated with the distribution of the number of paths in the
interaction network. The perturbation signal reaches oscil-
lators at small distances essentially through only one path.
The dissipative mechanisms inherent to the dynamics of
the oscillator ensemble progressively attenuates the signal,
which decays exponentially with the distance. For oscilla-
tors at large distances, on the other hand, the number
of available paths grows exponentially, at a rate that –at
least, for small perturbation frequencies– is similar to the
rate of exponential decay of the signal. These two par-
tially compensating effects determine that the variation
of the response with the distance is much smoother for
large distances.

The second aspect has to do with the fact that
the external perturbation affects individual oscillators in
two ways. Besides the propagation of the signal through
the network, which acts on the oscillators with different
intensities depending on their distance to the node where
the perturbation is applied, there is an overall contribution
originated by the average motion of the whole ensemble,
which affects all oscillators with the same intensity. This
global contribution is inversely proportional to the system
size, and therefore could be generally neglected for suffi-
ciently large systems. However, it does play an important
role in determining the system response at distances where
the propagating signal has been strongly damped. It also
determines the response at high perturbation frequencies,
where the propagation mechanism is very ineffective, es-
pecially, at large distances. Our analysis shows that the
overall contribution of the average motion of the ensemble
and the local contribution of the propagated signal have
opposite signs. In other words, their oscillation phases dif-
fer by π, in such a way that, if their amplitudes are similar,
a phenomenon of destructive interference takes place. In
our random networks this happens, precisely, at the tran-
sition between the two regimes discussed above, when the
amplitude response has decreased by a factor of about the
inverse of the system size. The minimum in the amplitude
at those intermediate distances can thus be interpreted
as the result of the destructive interference between the
two contributions that affect individual motions.

Generally, we may expect that interference phenom-
ena play an important role in the dynamics of oscillator
networks. This is due to the fact that, as we have seen,
the oscillatory signal changes its phase as it propagates
through the network. The signal can reach a given oscilla-
tor through different paths, and thus with different phases.
The sum of all those contributions will depend not only
on their amplitudes but also on their relative dephasing,
likely giving rise to interference. From this perspective, the
saturation of the response at large distances, were contri-
butions from many different paths are acting, could be
interpreted as a phenomenon of constructive interference
that breaks down the regime of exponential decay.

The applicability of our analytical approach is not re-
stricted to random networks. We have shown how our
main results extend to regular and hierarchical arrays
of phase oscillators. Numerical calculations show, more-
over, that the same results are qualitatively reproduced
in non-regular random interaction patterns. The most im-
portant extension considered here, however, has consisted
of replacing phase oscillators by chaotic Rössler oscilla-
tors. The response of ensembles of these chaotic elements
to the external perturbation was analyzed by numerical
means. In spite of the essential difference in the nature of
the individual dynamics, we have verified that the most
important features found for phase oscillators are qualita-
tively reproduced by Rössler oscillators. Specifically, the
existence of two regimes, depending on the distance to
the oscillator where the external perturbation is applied,
and the resonance nature of the response are also ob-
served for the chaotic elements. Non-linearities inherent
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to the chaotic dynamics contribute extra effects, such as
higher-harmonic resonances.

As a concluding remark, let us stress that our anal-
ysis establishes a close connection between the collective
dynamics of an ensemble of coupled oscillators subject to
an external action and the interaction pattern underly-
ing the ensemble. This connection provides a method to
indirectly infer the structure of such interaction pattern
by studying the response of individual oscillators to an
external perturbation. Sampling the motion induced by a
perturbation applied at different nodes on various oscilla-
tors may be used as an experimental tool to reconstruct
the interaction network.
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